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ABSTRACT

The static susceptibility of a free electron gas

in D dimensions at T = 0 is obtained by techniques of

dimensional regularization. Our solutions for the sus-

ceptibility x(k,D) are given in terms of the hyper-

geometric function. For any integer dimensions analytic

expressions are possible. The high and low k series

solutions are shown to be related by an analytic con-

tinuation if D is an odd integer, but not related if D

is an even integer. The singularity at 2kF is a branch

point, whereupon the series solutions are absolutely

convergent, yielding X(k=2kF,D) - (D-1)- . The

relationship of xkD has the appearance of a PVT diagram.
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I. INTRODUCTION
I

The wave vector k dependent suscepti/ility x(k) is a basic physical
1

quantity in many-body physics. It enters into a variety of physical

relationships, e.g., dispersion relations, scaling laws. For a free electron

gas this quantity is exactly known in spatial dimensions D - 1,2, and 3.2- 6

Especially interesting is its singular behavior at k=2k due to what is known

as the Pauli blocking, where kF is the Fermi wave vector. This singularity

7is responsible for the Kohn anomaly in the phonon spectrum of a metal. The

singularity in the susceptibility at 2kF is D dependent. In D = 1 the sus-

ceptibility has a logarithmic divergence. In D - 2 the susceptibility is

finite but its slope is discontinuous. In D = 3 the slope has a logarithmic

divergence. This trend suggests that the strength of the singularity becomes

weakir with increasing dimensions. A precise knowledge of the D dependence would

be of interest.

In addition to its own intrinsic interest, the susceptibility for a free

electron gas is useful in other ways. If electrons now freely interact pair-

wise via the Coulomb force, the susceptibility for the interacting electron gas

can always be written in the following form: x int(k) = x(k)/(l + Ak x(k)), where

is some function of the interaction.8 If Ak - vk, where vk is the Fourier

transform of the Coulomb potential, one gets the simple RPA theory. If

k -=Vk(l - Gk), where G is a local field term, one recovers the generalized

RPA theory. Hence, the knowledge of the susceptibility for a free electron

gas is essential to these RPA theories.

The above idea may be extended to the linear response theory of dynamical

processes since x(k) = X(k,=O), where w is the frequency. In dynamical theories,

the knowledge of the static susceptibility is always pre-supposed.1 For example,

the relaxation function is normalized with respect to the static susceptibility.

Moment sum rules are expressible in terms of the static susceptibility.
9
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More subtle is that the susceptibility may be defined by the Kubo scalar

product (see sec. II). The Kubo scalar product is an inner product which

realizes an abstract Hilbert space. In this realized space time-dependent
10

quantum statistical problems are all definable. Hence, the existence of

the susceptibility plays a central role in the study of time evolution of
11

dynamical variables. In such a study there is the possibility that the

relaxation function may assume a mean-field form in all spatial dimensions

12
greater than a certain critical value. This kind of dynamic anomaly is

13
signaled by a deformation of the realized Hilbert space. Furthermore, the

critical dimension may take on a noninteger value. The physics of noninteger

dimensions is of current theoretical interest. See e.g., fractals,1 4

15 16c-expansions , kinetics of formation.

The evaluation of the susceptibility for higher integer dimensions

e.g.. D - 4 may be carried out as was for D - 1 - 3 (see Secs. 1I and II).

We shall use techniques of dimensional regularization developed in particle

17
physics to obtain a solution for the susceptibility which is valid for any D,

integers and nonintegers. This solution X(k,D) might be viewed as e.g., the

PVT diagram of a homogeneous fluid. It traces a contour, which is a map of a

continuous surface. This map is naturally divided into two regions (high and low

k) by the D line at k - 2k . By moving alongside of this boundary line, one can

examine the mathematical nature of the singularity at 2k .|F

We find that X(2kFr D) - 1/(D-1), D>1; X (2,c D) = -(D-2)/(D-I} (D-3),

D >3, etc. We also find that the susceptibility is of two families, D odd and

D even. For D odd, the singularity at 2kF is all logarithmic in origin. For

D even (high k region) the singularity is of the square root. For D odd, the

solution in one region is an analytic continuation into the other and 2kF is a

branch point. For D even, there are no such relationships and k = 2kF is a

branch point only in the high k region.
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11. STATIC SUSCEPTIBILITY

A free electron gas is described by the following Hamiltonian:

H kck Ck Ck (1)

where ck = k2/2m, a is the mass of the electron, Ck and ck are, respectively,

the fermion creation and annihilation operators at wave vector k. Our units are

such that X - 1. The longitudinal response to a weak static density-coupled

perturbation is the static susceptibility given by the KUbo scalar product

(K.S.P.) 9 -A +
Xlk)= (Ok , fP) = d <e H k e - ' H P. > (2)

0

where 0 is the inverse temperature, the brackets < ... > denote an ensemble

average, + denotes Hermitian conjugation, and pk is the density fluctuation

operator defined as

Pk C c + k (3)

It is well known that the K.S.P. for a free electron gas may be given by

:~ xMk - 2E - (f - f+ )/(ck (4)
p

where fk is the Fermi function. Converting the sum into an integral we can

rewrite (4) in spatial dimensions D as

xD(k) - 4 (27,)0' J /(Cp+k -Cp). (5)

At T - 0 the Fermi function is a step function, i.e., fk = O(kF - k). Hence,

for D small integers one can directly evaluate (5). For D = 1-3, the susceptibility

is already known.2-6 For comparison purposes, we shall list its normalized values

2D(k) = XD(k)/XD(O), expressing k in units of kF:

=l(k) - k-1  InI (2+k)/(2-k) I (6a)

22 (k) = I - e (k-2). €l 4/k 2  (6b)

3 (k) - A (1 + k-(1 - 4k2 ) In 1(2 + k)/(2 - k) i]- (6c)



1I1. EVALUATION OF THE SUSCEPTIBILITY FOR D - 4

The static susceptibility for D - 4 may be written down from (5):

X4k 2 1 2w cs2, ! dIk d)sin20 7
x4(k k 3 k + 2 p cos8 " '

0 a

We shall consider the angular integral first (denoted by Q). It may be converted
ie

into a contour integral on the unit circle by the substitution 
u - e ,

i (2 - )2

Q --L du -2 ( 1)
u .(u - u+).(u - )

where

* u =ik/2p ± ((k/2p) 2  1)

The zeros of the denominator are 0, u+ and u_. The zeros u+ and u_ may be real

or complex depending on whether Ik/2pl. is greater or less than 1.

(i) Ik/2pI > 1

The conjugate zeros u and u are real l-ying, respectively, . outside

and inside the unit circle. Hence, the zero u+ does not contribute to the integral.
The residues at 0 and u are, respectively, k/p and -2((k/2p)2 - . Together,

Q _ wk/2p2 . (1- (1- (2p/k) 2)A

(ii) Ik/?21 < 1

The conjugate zeros are now complex and lie on the contour of integration.

If we take the Cauchy principal value, their contributions cancel each other

exactly, leaving only the zero at the origin to contribute to the integral,

giving Q - wk/2p 2 .

Both may be combined to read as

Q - wk/2p2 . [1- e (k 2 _4p 2),(l - (2p/k) 2 )] (9)

Using (9) in (7) we can now complete the radial part:

R (k) X4 (k)/X 4 (0)

=1 - k2/6. [1 - 0(k-2).(l - 4/k2) 3/2] (10)
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2 2where X4 (O) = mkF /47r. We observe that the susceptibility and its derivative

are both finite and continuous at k - 2kF.

For D even generally, the same idea may be used to evaluate the angular

integral. There always is one pole of order D-2 at the origin. The conjugate

poles u+ and u_ behave in the same manner as described for D=4. For D odd,

one cannot avail of this simplification and must resort to e.g., integration

by parts. In any event, the evaluation of the susceptibility by this standard

approach becomes very tedious as D =. Also one is limited to integer dimensions

only. We shall, therefore, consider another approach i.e., dimensional regulari-

zation1 7 which may allow us to obtain the susceptibility possibly more simply

and, more important, in any dim esions.



7

IV. DIMENSIONAL REGULARIZATION

From (5) it is possible to express the zero temperature susceptibility for

D> 3 as follows:

XD(k) - A dp Jd8 (sins)D-2 k + p cose)

0 0

S A 1 (11)

D Dwhere A A(k,D) = 2kFD SD./keF(2y) , where SD = 2r(4)/r(4D), and k is in

units of kF . To evaluate this double integral, we exchange the order of

integration. For k > 2 the integrand is well behaved in the given interval

of p. One can, therefore, expand it in powers of (2/k) and carry out the inte-

gration term by term. If, for k < 2, one attempts to expand it in powers of

(k/2), one encounters a pole in the interval of p. To avoid this difficulty,

we consider the following integral:

Jde (sin0) fdp . (k + p cosB s -1 .  (12)

0 0

If we assume s is a positive integer, the new integrand is now well behaved in

the interval of p for any k. Hence, one may expand it binomially and complete

the integration term by term. Then one may possibly analytically continue I toS

obtain I 0 I. Clearly for K >2 this process is unnecessary, hence it can be

used as a direct test.

For any positive integer s, we obtain

2s-1

S (4k) r(2s) (s2(cos) (13)
s (D+2s-n-1). f(2s-n).r(n+l j sn~o

0

Next the angular integration although cumbersome is straightforward. Termrs of

even n vanish. Letting n - 2n-l, -.e get

sF I 4 (k/2) 2n-lr(2s) .r (D- ). r (s-n+4) (14)
n=l r (2n). r(2s-2n+l) . r (s-n+D+i)



The above expression is appropriate for the kc <2 expansion. To obtain an

expression more suitable for the k >2 expansion, we rewrite (14) in ascending

powers of (2Ak) by letting s-n -).n

s-1
is=J k2 s1-(2A/) 2n r(2s)..r(4D-i)..r(n-F)) (15)

n I(/)~ o r(2s-2n). r(2n+1).r(n+4D+1)

Both expressions (14 & 15) are clearly well defined for any finite positive

integer s. There are s terms in each expansion. We now take advantage of the

Gamma functions present in our expansions to perform analytic continuation. We

first note that for any r >0,

lrn r(t+l) = tr(t)=(-).2)(-Il(r) (r.

t+-

Hence

lin r(2s) '(-l) (-2). (-2ni-) .r(-2n+l) -

and

lim r(2s) _(-1) (-2).. (-2n) .r(-2n) 1.
S- -0 r(2s-2n).(nl r(-2n) .r(2n+l)

Using these results we get 
19

~ -=-.r ~D', ~(k/2) 1n r (-n4-F) /r (-n+ijD+l), k < 2 (16a)
0 n=l

=e (4-4) 2/k)2n+l r(4 r(+iDl > 1b

n--o

D 20
Finally, using the definition for A, X(k0O,D)=(k F/2-,r .S Dc /, where

S/S D- r (4) . r(4D-4) /r (4D) ,

we get j(k,D) BX(k,D)/X(0,D)

~'4) (k,/2)2- , k < 2 (17a)
4(4*n-l r(-n+4D+l)

= (2/k) 2n+2 r(n+4) kc > 2.(1b
n~o r(n+- D+l)
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Since the Gamma functions are well defined for any arguments other than

zero or negative integers, our solutions (17a,b) are applicable to any value

of D. Our series solutions agree term by term with the high and low k expansions

of the susceptibility for D = 1-4 (eqs. 6 and 10) previously obtained by a

conventional method.
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V. APPLICATION OF THE HYPERGEOMETRIC FUNCTION

It is possible to express the susceptibility series (eqs. 17a,b) in terms

of the hypergeometric series F(a,b;c;t) defined as follows:
21

F(a,b;c;t) = (an b /c n!) t, Itl <1 (18)
n=o

where a = r(n+a)/V(a), etc., c yl 0, -l,-2,...The advantages of having the

susceptibility given in the hypergeometric function (h.g.f.) are evident.

One can obtain analytic representations for integer dimensions. Properties

of the h.g.f. may be used to study the behavior of the susceptibility at the

singular point 2kF. The high and low k expansions may be related through an

analytic continuation.

For this purpose, we introduce z = (4k)2 and let R(zD) = R(z<lD) and

i2 (z,D) = R(z>l,D). We shall consider 1 (z,D) first. Using the identity
n

r(t-n) = (-i) r(t).r(-t+l)/r(-t+n+l)

in (17a) we obtain after some manipulations
X1 (z,D) = - r(-)/Dr(-JD). I z r(n+- D)/r(n+3/2)

n=o

= F(l,1-4D;3/2;z). (19a)

Similarly, we obtain from (17b) with aid of (18)

1 -l 1 -1
X2 (z,D) = D

- z F(1,4;I+D;z -I ). (19b)

Hence, together we have

x(z,D) = F(l,l- D;3/2;z), z <1 (20a)

-1 -1 -l= z F(1,4;l+ D; , z > 1. (20b)

We observe that for D = 1 the high and low sides of the susceptibility have

the same parameters of the h.g.f.: a = 1, b = 4, c = 3/2. For these values the

h.g.f. has an analytic representation,

2 -1F(l,-J;3/2;t 2  _41t- in(l + t)/(l - t), Itl <i. (21)

The resulting susceptibility is in exact agreement with the D = 1 result

(eq. 6a).
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To obtain analytic representations of the susceptibility for other

integer dimensions, we study the h.g.f. Consider F(l,1-4D;3/2;t) first.

For D even, b = 0,-l,-2,.. and for D odd, b = 4,-4,-3/2,..Hence, for D even,

the h.g.f. is a polynomial. For D odd, the h.g.f. is contiguous 21 , i.e.,

Fb- 1 = 4 + i(l-t)Fb (22)

where Fb = F(l,b;3/2;t). Hence, using the known form for F, one can

generate all others readily. Now since F1 contains a logarithmic singularity

(see 21), all odd-dimensioned low-k susceptibility contains the same singularity.

We next consider F(1,4;I+4D;t). For D even (including.0), c = 1,2,3,...

and for D odd, c = 3/2, 5/2, 7/2,.. In both cases the h.g.f. is again

contiguous,

F = 3/2t.(1 - (1-t)F (23)
c+l c

where Fc = F(l,4;c;t). Hence, now there are two "seeds," F1 and F3/2, where

F1 = F(1, 4;l;t) (1 - t) -4 (24)

and F3/2 is already given (see 21). Thus all the even-dimensioned high k

susceptibility has a square root singularity, while the odd-dimensioned high k

susceptibility has a logarithmic singularity.

Shown in Table I are analytic representations of the susceptibility for

D = 0 - 6 in the high and low k regions obtained by the relationships of the

contiguous h.g.f. Even and odd dimensional cases are grouped separately to

erphasize their distinctive singular behavior. These results for D = 1 - 4

are in agreement with the previously established results (eqs. 6 and 10).

zar--.agInent for D - 1 and 2 is interesting in view of the original

restriction imposed on eq. (11), i.e., D 2 3. Evidently, the dimensional

regularization techniques used here have ultimately removed the restriction.

Illustrated in Fig. 1 is the susceptibility vs. wave vector for a few low

integer values of D.
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VI. BEHAVIOR NEAR 2kF

The h.g.f. F(a,b;c;t) is absolutely convergent on jtI= 1 if Re(c-a-b) > 0

and has the value
21

F(a,bc;l) = r(c) .r(c-a-b)/r(c-a) .r(c-b). (27)

If applied to the high and low k sides, we find that

jllz-l,() - D2 (z- ,D).- 1D-l)-, D > 1. (28)

Thus, the susceptibility is continuous at z = 1 (k - 2k ) except when D = 1.

The slope at the boun'Ary can be evaluated by using

F(a,b;c;t) - _ F(a+l,b+l;c+l;t) (29)

and (27) provided now that Re(c-a-b-l)> 0. We obtain

aX 1 (zl 'D) =iX 2 (z = 1,D),= -(D-2)/(D-l) (D-3), D > 3. (30)

Similarly, we obtain

(z) j(z=1,D) = 2(D-2) (D-4)/(D-.1) (D-3) (D-5), D > 5. (31)
az

Thus, where convergent, we see that the high and low k sides of the

boundary have the same first and second derivatives. In Table II, we have given

the boundary values.

We can also examine the behavior of the susceptibility along the boundary

itself, that is, the z=l constant line in, say, the Dz plane. From (28) we see

that the behavior is simpler, e.g., !-x(l,D) = -(D_) - 2 , etc., than the

behavior in the direction perpendicular to the boundary.

We shall use other properties of the h.g.f. to establish additional

properties of the susceptibility at the boundary. First of all, the h.g.f.

F(a,b;c;t) has two branch points, one at t = I and the other at infinity if

a or b is not a negative integer. Hence, except when D is an even integer

on the low k side, the boundary is a line of branch points.
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Also the h.g.f. F(a,bjc;t) is defined by a power series (see eq. 18) for

t complex when Itl <1. It is certainly regular in this domain. Hence, the

susceptibility is defined even for noninteger values of D. The h.g.f. is also

defined by analytic continuation when Itl al. It suggests, therefore, that

i 2 (z,D) may be an analytic continuation of jI(z,D) into the high k region.

It is known that when t lies in the part of the cut plane for which Itl 21,

Iarg(-t) < 21

F(a,b;c;t) = B(a,b,c).(-t)-aF(a,l-c+a~l-b+a;t
- )

+ B(b,a,c).(-t) ) (b.l-c+b;l-a4b;t ), (32)

where

B(a,b,c) = r(c). r(b-a)/r(b).r(c-a). (32a)

Hence, F(a,b;c;t) when it has a meaning is a one valued analytic function,

regular in the whole plane of t, cut along the real axis from t - 1 to -.

Let the domains Izi <l and izI 21 be denoted, respectively, by V1 and V2

By our definition which is analytic in V1 is j in V1 and similarly j2 is the

analytic function j in V 2. Then by the above-stated properties of the h.g.f.,

F E F(l,I-4D;3/2;z) is analytic in PI U V2. If for Re z, Re F = i1 in V1 and

Re F 2 in V2 ' then '2 is the analytic continuation of V into V2"22 By (32),

-1-11 1(/)(D/(+D.~ +11D -1 4+4 D
F = D-Iz - 1 .F(1,J; l+D;z 1) + (1(3/2) r(*D)/rcA +%D) z)-+(1 - z' )-  .(33)

Consider F when D is an odd integer first. It is sufficient to take D - 1

since F of other odd integers can be generated from it. Then, for D = 1,

F - ,4z- 1n(1 + z- )/(l - z -4 ) + .,(-z)- . (34)

In the domain 1 the above logarit.mic argu.ent is negative. It can be
1

resolved into real and imaginary parts, the latter of which cancels the second

term of (34) exactly, leaving

F - 4z "4 ln(1 + zA)/(1 - z4 ). (35)

Hence, Re F - in V1. It follows directly that Re F a i2 in V2. One can
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similarly show that whenever D is an odd integer, X2 is the analytic continuation

of i into D2 .

We next consider F when D is an even integer. Then, b = 1 - D is either

zero or a negative integer and X- F(l,b;3/2;z) is an e' tire function being

a polynomial. But i2 is not a polynomial. The two functions are thus not

related although continuous at z = 1. One can, in fact, show by (33) that,

for Re z, Re F = in DI' but Re Fpd X2 in V2. With this analysis we

conclude that when D is an odd integer, i2 is the analytic continuation of

XI; but when D is an even integer, it is not. When D is not an integer, the

relationship established for D odd integers is expected to hold.

=*
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VII. DISCUSSIO0N

Our result for the susceptibility obtained as a function of z and D are

embodied in Fig. 2, which gives a 3-dimensional projection of jzD. It is

reminiscent of the PVT diagram of a homogeneous fluid. The surface represents

the susceptibility that is physically accessible as z and D are varied. The

shape of the surface is distinguished by an unbroken "ridge" (marked in the

figure by small circles). It is a line of branch points, a z-l constant

line. The ridge separates the surface into two sides (high and low k).

The low-k side of the surface is further subdivided by the D=2 constant line

into an area of rising curvature and an area of falling curvature. The high

k side of the surface is not further divided. Hence, the ridge is folded

upward for I < D < 2 and folded downward for 2 < D < -.

The ridge itself shows very smooth behavior, becoming singular at one

end (D-1) and vanishing at the other end (D--). Other z-constant lines, e.g.

z - 0 are less interesting. More interesting is D-constant lines which

interesect the ridge. They look much like the familiar isotherms in the PV

diagram (also compare Fig. 1). When D is an integer, the intersection is a

point of singularity, either open as in D - 1 or hidden as in D - 2. The

ridge is punctuated with these intersections throughout.

Other finer details of the susceptibility surface are possible to give.

Except on the D-constant lines of even integers, one can move across the ridge

via analytic continuation. These excepted lines are demarcated by the ridge.

That is, on these excepted lines, the knowledge of one side is insufficient

to describe the other side.23 The singularity at z = D - 1 is weaker when

approached perpendicular to the ridge than when approached along the ridge.

To some extent our picture is applicable to an interacting electron gas by

virtue of the RPA theories.
24
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Captions

Table I. Analytic expressions of the susceptibility. These results are

obtained by the relationships of the contiguous h.g.f.

- ln(1 + z )/(1 -zh ) and L2 = ln(1 + z-h)/(l -- )

Table II. Boundary values of the susceptibility. R' and " are, respectively,

the first and second derivatives of R(z,D) with respect to z at z

- 1. These undesignated 's are divergent as (1 - z- )-1 for

D even and (1 - z- )-l for D odd. In the unfilled regions, the

appropriate formulas are given.

Fig. 1. The susceptibility vs wave vector at integer values of D.

k in units of kF .

Fig. 2. The susceptibility as a function of z and D. Small circles form

2a line of branch points. z = (k/2)
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Table I

D Rl R2

0 z-h (1 -z) sin- z D-1 z-I(l - z'l -h , D 0

2 1 1 - (1 - z-1)

4 1 - 2z/3 1 - 2z/3-( -(1 - z-1)3/2)

6 1 - 4z/3 + 8z 2/15 1 - 4z/3 + 8z 2/15 "1 - (1 - z-1)5/2

I hz L1  
- L2

3 h+ kz-4(1 - Z)L h + *z-(l -z)L2

5. 5/8 - 3z/8 + 3/16z-A (I - Z)2 L1 5/8 - 3z/8 + 3/16z-CI (1 z) 2L2

ii I I I ' I I " I ' =I Ma" i
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Table II

D R! X; R"1 .2

- (log) -(log) " -M m "

2 1 1 0 - 0

3 -.. (log) - (log) -

4 1/3 1/3 -3/2 -3/2 0

5 -3/8 -3/8 - (log) - (log)

6 16/15 16/15

1 -(D-2)
(D-1) (D-1) (D-3)

2(D-2)(D-4)
(D-1) (D-3) (D-5)

- 0 0 0 0 0 0

mon
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